Files
weevil/templates/testing/ARCHITECTURE.md
Eric Ratliff 60679e097f feat: Add template system to weevil new command
Implements template-based project creation allowing teams to start with
professional example code instead of empty projects.

Features:
- Two templates: 'basic' (minimal) and 'testing' (45-test showcase)
- Template variable substitution ({{PROJECT_NAME}}, etc.)
- Template validation with helpful error messages
- `weevil new --list-templates` command
- Template files embedded in binary at compile time

Technical details:
- Templates stored in templates/basic/ and templates/testing/
- Files ending in .template have variables replaced
- Uses include_dir! macro to embed templates in binary
- Returns file count for user feedback

Testing template includes:
- 3 complete subsystems (MotorCycler, WallApproach, TurnController)
- Hardware abstraction layer with mock implementations
- 45 comprehensive tests (unit, integration, system)
- Professional documentation (DESIGN_AND_TEST_PLAN.md, etc.)

Usage:
  weevil new my-robot                    # basic template
  weevil new my-robot --template testing # testing showcase
  weevil new --list-templates            # show available templates

This enables FTC teams to learn from working code and best practices
rather than starting from scratch.
2026-02-02 22:31:08 -06:00

200 lines
6.0 KiB
Markdown

# Weevil Motor Cycle Demo - Architecture Overview
## What This Example Demonstrates
This is a minimal but complete FTC robot project showing how Weevil enables:
1. Clean separation of business logic from hardware
2. Unit testing on Windows JRE without FTC SDK
3. Professional software architecture for robotics
## The Problem Weevil Solves
Traditional FTC projects:
- Force you to edit SDK files directly (TeamCode folder)
- Mix hardware dependencies with business logic
- Make testing nearly impossible without a physical robot
- Create monolithic OpMode classes that are hard to maintain
## Weevil's Solution
### Three-Layer Architecture
```
┌─────────────────────────────────┐
│ OpMode (Integration Layer) │ ← Only runs on robot
│ - Wires everything together │
└─────────────────────────────────┘
┌─────────────────────────────────┐
│ Business Logic Layer │ ← Runs everywhere!
│ - MotorCycler │ Tests on Windows JRE
│ - Pure Java, no FTC deps │
└─────────────────────────────────┘
┌─────────────────────────────────┐
│ Hardware Abstraction Layer │ ← Interface + implementations
│ - MotorController (interface) │
│ - FtcMotorController (robot) │
│ - MockMotorController (tests) │
└─────────────────────────────────┘
```
## File Breakdown
### Hardware Abstraction (`src/main/java/robot/hardware/`)
**MotorController.java** (17 lines)
- Interface defining motor operations
- No FTC SDK dependencies
- Default methods for convenience
**FtcMotorController.java** (19 lines)
- Wraps FTC SDK's DcMotor
- Only compiled when building for robot
- Implements MotorController interface
**MockMotorController.java** (27 lines - in test/)
- Test implementation
- Tracks state for assertions
- No hardware required
### Business Logic (`src/main/java/robot/subsystems/`)
**MotorCycler.java** (95 lines)
- Pure Java state machine
- Time-based motor cycling
- Zero FTC SDK dependencies
- Fully testable in isolation
Core design:
```java
public void update(long currentTimeMs) {
long elapsed = currentTimeMs - stateStartTime;
switch (state) {
case OFF:
if (elapsed >= offDurationMs) {
motor.setPower(motorPower);
state = ON;
stateStartTime = currentTimeMs;
}
break;
case ON:
if (elapsed >= onDurationMs) {
motor.setPower(0.0);
state = OFF;
stateStartTime = currentTimeMs;
}
break;
}
}
```
### Integration (`src/main/java/robot/opmodes/`)
**MotorCycleOpMode.java** (44 lines)
- FTC OpMode
- Connects hardware to logic
- Minimal glue code
### Tests (`src/test/java/`)
**MotorCyclerTest.java** (136 lines)
- 9 comprehensive unit tests
- Tests timing, state transitions, edge cases
- Runs in milliseconds on PC
- No robot or FTC SDK required
Test coverage:
- Initialization
- State transitions (OFF→ON, ON→OFF)
- Full cycle sequences
- Time tracking
- Stop functionality
- Edge cases (default power, tiny power values)
## Development Workflow
### 1. Write Code Locally
Edit files in `src/main/java/robot/` - your IDE works perfectly
### 2. Test Immediately
```bash
gradlew test
```
- Runs in seconds on Windows
- No robot connection needed
- Full JUnit reports
### 3. Deploy to Robot
```bash
build.bat # Compiles everything, builds APK
deploy.bat # Copies APK to robot
```
## Why This Architecture Matters
### For Students
- Learn professional software engineering
- Write testable code
- Build confidence through tests
- Debug logic without hardware
### For Teams
- Multiple programmers can work simultaneously
- Test changes before robot practice
- Catch bugs early (compile-time, not drive-time)
- Build more complex robots with confidence
### For Competitions
- More reliable code
- Faster iteration cycles
- Better debugging capabilities
- Professional development practices
## Technical Benefits
1. **Dependency Injection**: MotorCycler receives MotorController through constructor
2. **Interface Segregation**: Clean interface with single responsibility
3. **Testability**: Mock implementations enable isolated testing
4. **Separation of Concerns**: Hardware, logic, and integration are distinct
5. **Open/Closed Principle**: Easy to extend without modifying core logic
## Comparison to Traditional FTC
| Traditional FTC | Weevil Architecture |
|----------------|---------------------|
| Edit SDK files directly | Your code stays separate |
| Mix hardware and logic | Clean separation |
| No unit tests | Comprehensive tests |
| Debug on robot only | Debug on PC first |
| Monolithic OpModes | Modular subsystems |
| Hard to maintain | Easy to understand |
## Extending This Example
Want to add more features? Keep the pattern:
1. **Add Interface** in `hardware/` (e.g., `ServoController`)
2. **Implement Logic** in `subsystems/` (e.g., `ArmController`)
3. **Create Mock** in `test/hardware/`
4. **Write Tests** in `test/subsystems/`
5. **Wire in OpMode** - just a few lines of glue code
The architecture scales from simple examples like this to complex multi-subsystem robots.
## Real-World Application
This demo shows the fundamentals. Real robots would have:
- Multiple subsystems (drivetrain, arm, intake, etc.)
- Command pattern for complex sequences
- State machines for autonomous
- Sensor integration (same abstraction pattern)
- Configuration management
All testable. All maintainable. All professional.
---
**This is what Weevil enables: writing robot code like professional software.**